Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies
نویسندگان
چکیده
Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3.
منابع مشابه
Photoemission measurements of Ultrathin SiO2 film at low take-off angles
The surface and interfacial analysis of silicon oxide film on silicon substrate is particularly crucial in the nano-electronic devices. For this purpose, series of experiments have been demonstrated to grow oxide film on Si (111) substrate. Then these films have been used to study the structure of the film by using X-ray photo emission spectroscopy (XPS) technique. The obtained results indicate...
متن کاملAtomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunne...
متن کاملSpectral function of ferromagnetic 3d metals: a self-consistent LSDA+DMFT approach combined with the one-step model of photoemission.
The electronic structure of ferromagnetic 3d-transition metals in the vicinity of the Fermi level is dominated by the spin-polarized d bands. Experimentally, this energy region can be probed in detail by means of angle-resolved ultraviolet photoemission and inverse photoemission. In several earlier studies the measured spectra were described either within a single-particle approach based on the...
متن کاملKitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3
Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-R...
متن کاملElectron spectra of a self-assembled monolayer on gold: Inverse photoemission and two-photon photoemission spectroscopy
Ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, and two-photon photoemission spectroscopy are techniques commonly used to examine the electronic structure of surfaces and interfaces. We have used all three to study self-assembled monolayers of 4,4 0-bis(phenylethynyl)benzenethiol on gold, a system often studied for potential application in molecular electronic juncti...
متن کامل